
28 CROSSTALK The Journal of Defense Software Engineering October 2002

Open Forum

People go years, possibly their entire
lives, exhibiting certain behaviors,

sometimes knowingly but often unaware
of any notable pattern. Sometimes an
event will occur where a name is given to
their particular behavior. A man who takes
his work problems out on his family may
be in an anger management class and be
informed that he exhibits misplaced aggres-
sion. For a woman whose husband is an
alcoholic, yet buys liquor for him, might be
labeled an enabler.

This identification can lead to an
epiphany for the subject. This sudden real-
ization is exactly what happened to me
when a colleague of mine inquired as to
my willingness to write this article on agile
programming.

I had never before heard the term agile
programming, but my associate was famil-
iar with the concept and also with my
work, so I was willing to trust in his judg-
ment. During research into the concept of
agile programming, it quickly became evi-
dent that this was an acceptable label for
the coding practices I have used routinely
for more than 13 years.

Unwitting Agile Programmer
In my work as an analyst for a program
management firm, I use a fourth genera-
tion language (4GL), control and analysis
tool to build reports and graphs. My cus-
tomers and I use these documents to per-
form analysis on schedule related data. The
information derived from this data is used
to point out past mistakes and potential
problems, thus saving both time and
money. This is my goal as a program man-
agement analyst, and the goal of my firm,
to make our customers successful.

Occasionally I am called upon to devel-
op related applications or modules using
4GL. Some applications are written to ana-
lyze existing data and some to capture new
data. The latest major development effort
involved a resource-forecasting tool used
to project future work requirements, and
provide what-if scenario modeling. Because
the customer wanted to keep the existing
analysts at the site working on their current
assignments, a separate contract was writ-
ten and programmers were hired to per-

form the work. This project followed a tra-
ditional software development methodolo-
gy because this methodology worked for
this project. The project finished on time
and under budget.

In 1994, the Air Force was awarded the
Navy FA-18 programmed depot mainte-
nance (PDM) contract. This was historic in
that it was the first time that one branch of
the armed forces was contracted to repair
a weapon system used by a different
branch. The accepted proposal called for
the work to be performed at Hill Air Force
Base (AFB) in Ogden, Utah.

Since the fall of 1993, I had been work-
ing as a program analyst on the Program-
med Depot Maintenance Support System
contract in the Aircraft Directorate at Hill
AFB. When the new workload arrived, the
program management team provided
precedence network schedules and tracked
the work against the plan, as had been
done for the other aircraft work at Hill
AFB.

Not long thereafter, the Aircraft
Directorate was audited by an independent
audit agency. Their findings required Hill
AFB to provide an auditable unplanned work
approval tracking system. The F-18s were
brought to Hill AFB for a PDM, which is
basically an overhaul of the entire aircraft,
according to a specific set of operations to
be performed, called planned operations.
There are also provisions for problems
encountered either during aircraft inspec-
tion or while the mechanics are perform-
ing planned work. These problems are
defined as unplanned work and require
extra time not accounted for in the
planned operation package.

Given that the FA-18 is a Navy weapon
system and each aircraft has spent a good
deal of time on aircraft carriers or at
coastal Naval Air Stations, much of the
unplanned work is corrosion removal. This
unplanned work accounted for more than
half of the total hours on a FA-18 PDM.
The independent audit agency required a
way to show that hours billed to this con-
tract workload were not being used to
work on F-16s or C-130s, which were
located in the same hangars as the FA-18.
Without such an auditable system, the

workload would be pulled from Hill AFB
and given back to the Navy.

The Aircraft Directorate quickly estab-
lished a manual process that may have sat-
isfied the requirements set forth by the
independent audit agency. The only worry
was, with hand carrying of thousands of
documents to and from the hangars, some
were bound to get lost and therefore the
system might fail the audit.

An Air Force major working in the
Aircraft Directorate approached our firm
about automating this process. It was easy
to show a good potential return on invest-
ment (ROI) based on the amount of man-
hours involved in processing work cards in
the manual system. This also fell into the
scope of our firm’s program management
charter. Automating this system would
provide the ability to add the hours gener-
ated by this unplanned work into the
schedule as soon as the requests were
approved, thereby extending the schedule
in a real time fashion. Since all parties were
in agreement that this was a win-win situa-
tion, the next decision was how would we
proceed with development?

To bring in more analysts would
require writing a new contract or making
an amendment to the existing one. Since
the customer wanted the system in place
by the time the audit agency returned, this
option would take too long. They decided
instead to reallocate the existing resources
of the program management team and
place all three analysts on full-time devel-
opment of the new application. Due to the
time constraint, there was no development
of a formal plan or extensive require-
ments, which led to the use of methods
now described as agile.

A Perfect Agile Fit
Traditional programming methodologies
were put in place mainly to prevent require-
ments creep. In agile programming, potential
for these problems is diminished by getting
the application to the users quickly. Surely
if it takes two years to develop an applica-
tion, changes will arise in the organization
or process that will drive new requirements
and cause delays. Agile methodologies
exist that are specifically tailored to long-

Agile Before Agile Was Cool
Gordon Sleve

Robbins Gioia LLC

Success can be achieved by many means. Sometimes it is obvious which road to take, other times it does not really matter.
Look at individual circumstances before choosing one path over the other.
Success can be achieved by many means. Sometimes it is obvious which road to take, other times it does not really matter.
Look at individual circumstances before choosing one path over the other.

October 2002 www.stsc.hill.af.mil 29

Agile Before Agile Was Cool

term projects, but my experience has been
with short-term projects. The unplanned
work module was not extensive and we
were confident that we could provide a
quick turnaround. Even though we did not
have agile methodology guidelines to go
by, this project was a perfect candidate for
just such a philosophy. The Agile Software
Development Manifesto states:

We are uncovering better ways of
developing software by doing it and
helping others do it. Through this work
we have come to value:
• Individuals and interactions

over processes and tools.
• Working software over compre-

hensive documentation.
• Customer collaboration over

contract negotiation.
• Responding to change over fol-

lowing a plan.
That is, while there is value in

the items on the right, we value the
items on the left more. [1]

Although we did not know of agile
methodologies, in retrospect we practically
followed them to the letter. We focused
almost entirely on those items on the left and
for all intents and purposes, ignored the
items on the right. In this case, circumstance
rather than conscious thought led us to
perform in this manner. We were under the
gun to get a working product in place in a
short amount of time. There was little time
for planning, contract negotiation, or doc-
umentation.

The lack of planning shows a slight
departure from agile, but remember, we
did not have the agile methodology with
which to work. The available resources and
their expertise locked in our tools. Due to
the fact that very little of the traditional
methodologies were available to us, we
were forced to draw heavily from what is
now an agile approach. I like to look at
these two approaches as the Scarecrow and
the Tin Man, agile being the Scarecrow
(flexible) and traditional being the Tin Man
(rigid.) They both want to get Dorothy to
Oz, but they each have unique abilities and
weaknesses. In our case, we had to rely on
a Scarecrow named “agile.”

The initial requirements were to auto-
mate the manual process and add reports.
The bulk of the detailed requirements
were obtained during development by
working closely with civilian counterparts
involved in the unplanned work process.
These individuals were planners, sched-
ulers, and the approval authority, each with
knowledge of how their piece of the
process worked.

We met daily, but on an informal basis,
usually with the point of contact (POC)
most familiar with the section being
worked in a one-on-one setting. This
would almost always take place at the
developer’s desk. We showed progress
from the previous day and verified with the
POC that their requirements were being
met. Then we would identify any changes
that needed to be made and start working
to that end. As we moved through the
development phase, we would identify
those nice to have features and record those
requirements for follow-on work. Through
this process the programmer learned much
more about his customer’s needs than he
could by reading thousands of pages of
requirements documents. It also showed a
commitment to individuals and interac-
tions over processes and tools.

As changes were made to the applica-
tion, corroboration was sought from the
user before continuing further. Some-
times the user would sit through several
iterations of code changes right at the pro-
grammer’s desk, commenting and cri-
tiquing. By working closely with the user
community, there was very little need for
documentation and training. By the time
development was completed, the users had
been trained through their constant
involvement. There was no need for a for-
mal training class after implementation.
Since we knew there would be a good deal
of follow-on changes, we decided to wait
on documentation.

The main application was completed
with great success in plenty of time for the
next audit. The only cost associated with
the program was the temporary loss of
productivity toward the original program
management objectives. Our team was
awarded a certificate of appreciation from
the Aircraft Directorate citing a savings of
250 direct/indirect man-hours per aircraft.
There was a dollar figure placed on both
the cost (approximately $28,800) and the
savings (approximately $1 million) result-
ing in an actual ROI of more than 30 to 1.

Given the limited planning work, there
was no way to predict such a fantastic
windfall. However, had more time been
spent in planning, documentation, con-
tracting, and processes the ROI ratio
would have been less impressive. Follow-
on changes included expansion for both F-
16 and C-130 workloads, and a master write-
up module that provided the users with a
pick list of frequently used write-ups.

Specified Successful
Use Continues
Although the F-18 contract only lasted one

year before the workload was returned to
the Navy, the use of this application on the
F-16 and C-130 programs continues to this
day. This program is still in a textual inter-
face format but will soon be converted to
an Oracle/Web-based format to provide
better accessibility and ease of use. The
user community has taken ownership of
this application and they like it because of
that very fact; it is their own creation.
From time to time, minor bugs appear,
which will be the case when omitting con-
figuration management and strict coding
practices, but the users are happy with that
trade-off for flexibility.

One might argue that agile software
development flies in the face of program
management. While the irony of a pro-
gram management professional touting
“responding to change over following a
plan” is not lost on me, I see both method-
ologies coexisting and filling an important
purpose: to make our customers successful.

Yes, I am a proponent of agile pro-
gramming but only in those cases where it
is the best solution. Unless given a specif-
ic set of circumstances, I cannot say which
is best. I have experienced success with
both agile and traditional software devel-
opment methodologies, and success is the
ultimate goal.◆

References
1. AgileAlliance. “Agile Software Devel-

opment Manifesto.” 13 Feb. 2001
<www.agilemanifesto.org>.

About the Author
Gordon Sleve is a sen-
ior program analyst for
Robbins Gioia LLC
working in the ICBM
program office at Hill
Air Force Base (AFB)

in Ogden, Utah. He was previously a
site manager at Letterkenny Army
Depot in Chambersberg, Penn. Sleve
was selected as Robbins Gioia’s Senior
Program Analyst of the Year for
Dayton-based operations in 1995 for
his support of the implementation of
Programmed Depot Maintenance
Support System at Hill AFB.

Robbins Gioia LLC
OO-ALC/LMSO
6014 Dogwood Ave.
Bldg. 1258 Rm. 14
Hill AFB, UT 84056-5816
Phone: (801) 775-5943
Fax: (801) 586-4835
E-mail: gordon.sleve@hill.af.mil

